top of page

Search Results

58 items found for ""

  • Courses and Internships | Genetech

    Courses and Internships Our vision and mission Our teaching facility is designed and organised with Dr. Maya Gunasekera’s original vision in mind, which is “anyone interested in this subject should be given the opportunity to learn it”. Therefore, we offer training programmes aimed at providing a comprehensive knowledge of basics to advanced molecular biology. This includes coursework and well-structured practical training in laboratory methods in molecular biology under the guidance of practicing scientists. Genetech School of Gene Technology offers training programmes in areas including disease diagnostic methods of molecular medicine for medical officers, forensic DNA typing for medico-legal personnel, laboratory management for technical officers and courses on gene technology for post-Advanced Level, undergraduate and graduate level students. View FAQs A large number of undergraduate and graduate level students have undergone training at Genetech as interns and research students. At present, research students and technicians that trained at Genetech are contributing immensely to the field of Molecular Diagnostics through various organisations islandwide. Internships We offer internship opportunities for local and foreign students who wish to work in an active molecular life science facility and obtain hands-on experience in a wide range of molecular biology techniques. Furthermore, our interns will be supervised by experienced scientists to actively engage in some short-term research and devise innovative solutions to complex challenges in this field. By choosing to do an internship at Genetech, you will avail yourself of an opportunity to work in a scientific environment which is quite unique in Sri Lanka. You will be able to work alongside scientists who are amongst the most experienced personnel in the molecular life sciences and learn in an environment that is fast-paced and exciting. Being a testing laboratory, Genetech is constantly working against time to deliver molecular biology-based testing services. Being a research institute, Genetech is always keen to branch out into new areas. Being a training organisation, Genetech can provide you with an opportunity to learn from practicing scientists and be mentored by experienced teachers whilst conducting research in a well-equipped facility. Courses The objective of these courses is to give all our students a comprehensive understanding of the essential principles of the subject. It aims to give each category of students a degree of knowledge and skill which would help meet the requirements of institutes of higher education and research anywhere in the world, and also help to accelerate the career development of personnel requiring a non-professional level of skill in molecular biology, such as medical and medico-legal personnel. View our internships 5 Day Practical Training Programme for A Level Students Advanced Certificate Course in DNA Fingerprinting Industry Based Training Programme Laboratory Practical Courses for A/L Students and Teachers Polymerase Chain Reaction (PCR) Technology Molecular Diagnostics of Infectious Diseases Certificate Course in Gene Technology If you are interested in doing an internship or course at Genetech, please submit the Inquiry Form below or email us at info@genetechsrilanka.com to receive further details. View Inquiry Form

  • MPhil and MSc Projects | Genetech

    Research leading to the award of MPhil Determination of Population Structure of Yellow Dwarf Coconut Population in Sri Lanka Department of Botany. Chandima Kamral, M.Phil., Faculty of Applied Science, University of Sri Jayawardanapura; Coconut Research Institute, Lunuwila, Sri Lanka, 2015 (partially conducted at Genetech). Morphological and molecular identification of Oreochromis niloticus and its hybrids present in selected reservoirs in Sri Lanka. Saroopa Samaradivakara, M.Phil, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Sri Lanka, 2009. Establishment of DNA based HLA Typing in Sri Lanka for forensic and transplant purposes. Induwara Gooneratne, M.Phil, Department of Forensic Medicine, Faculty of Medicine, University of Peradeniya, Sri Lanka, 2007.​ MSc Research Projects Detection and confirmed of Brucella abortus in bovine aborted fetuses by PCR in selected localities in Sri Lanka. Samudi N. K. Mohotti, M.Sc., Department of Microbiology, Faculty of Science, University of Kelaniya, Sri Lanka, 2017. Genetic characterization and molecular phylogeny of Aedes aegypti (Diptera: Culicidae) in Sri Lanka based on COI gene. H.A.K.M. Dharmarathne, M.Sc., IBMBB, University of Colombo, Sri Lanka, 2016. HLA Typing of MHC Class I Molecules by PCR & Sequencing in Sri Lanka. Rashmi Tippalagama, M.Sc., IBMBB, University of Colombo, Sri Lanka, 2012. Molecular epidemiology of Dengue virus. Barathy Logendra, M.Sc. in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2010. ​ Molecular Characterization of Chikungunya Virus isolates in Sri Lanka. Ishara Herath, M.Sc in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2010. Molecular Characterization of human Cytomegalovirus in a cohort of immunocompromised patients in Sri Lanka. Imalka M. W. Gunasekera, M.Sc in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2010. ​ Suitability of using SSR markers to differentiate tissue cultured and other Musa varieties. Fintan. S. Gonsal, M.Sc. Postgraduate Institute of Agriculture, University of Peradeniya, Sri Lanka, 2009. ​ Molecular characterization of Mycobacterium tuberculosis isolates in Sri Lanka utilizing the mycobacterium interspersed repetitive units (MIRU) typing method. Nandika Perera, M.Sc. Molecular Life Sciences, Institute of Biochemistry Molecular Biology and Biotechnology, University of Colombo, Sri Lanka, 2009. Development of a single step reverse transcriptase-polymerase chain reaction assay to detect chikungunya virus in clinical samples. Navodhi Wickremasinghe, M.Sc. in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2009. Determination of sensitivity of multiplex and duplex PCR in the determination of Marek's disease virus. Shamini Akushla Wickramage, M.Sc in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2009. ​ Establishment of a Molecular Diagnostic System for Detecting Human Papillomavirus in Clinical Samples. Rubatharshini Ambikaibakan, M.Sc. in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2008. Development of a low cost multiplex PCR-based diagnostic assay for Down Syndrome. A. Mary Renuka Fernando, M.Sc. in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2008. Determination of the sensitivity of PCR based non-radiolabeled hybridization for the detection of Mycobacterium tuberculosis. K.A.D. Ravi Vishwajith, M.Sc. in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2006. Establishment of a molecular diagnostic system for detecting Y-chromosomal microdeletions which cause male infertility. Thiruchelvam Kariharan, M.Sc. in Experimental Biotechnology, Postgraduate Institute of Science University of Peradeniya, Sri Lanka 2006. ​ ​ ​

  • DNA Typing Services | Genetech

    DNA Typing Services Child custody and maintenance: In cases where one parent is claiming the custody and maintenance of a child and the other parent is refusing to accept parentage. Proof of adultery: Especially in divorce cases where the paternity of the child is suspect, and the wife is being accused of adultery, DNA typing can be used to determine whether the husband is the father of the child. Rape, which has resulted in pregnancy: DNA typing of tissue samples from the mother, child and suspected offender can be analysed to determine whether he is the father of the child. Testamentary cases: When a deceased person's wealth is to be distributed among his or her heirs, it is sometimes necessary to determine who the heirs are. DNA typing can be used to prove blood relationship to the deceased individual. Immigration: Individuals and families interested in establishing a proven biological link to their relatives ultimately enhance their chances of a successful application for immigration. Identity testing in cases involving immigration may include answering questions of paternity, maternity, and sibling relationships. Twin studies: DNA typing can be used to determine whether twins are identical or not. Identification of mutilated bodies: When a deceased person's body is mutilated and cannot be identified directly, such as in fire, vehicle accidents, bomb blasts, or due to prolonged burial, it is possible to identify these persons by comparing their DNA profiles with that of their close relatives'. Murder, violent assault, robbery: In these cases, a sample of tissue from the criminal is sometimes found at the scene of the crime, and if there is a suspect, DNA typing can very accurately determine whether the sample of tissue belongs to the suspect, thereby linking the suspect to the crime. Furthermore, a sample of tissue from the victim may be found on the criminal (such as blood stains on the criminal's clothing). Similarly, DNA typing can be used to determine whether the sample of tissue belongs to the victim in such cases, thereby connecting the suspect to the victim. Rape and other sexual offences: In these cases, semen and saliva samples may be obtained from the body and clothing of the victim. DNA typing can be used to determine whether the sample of tissue belongs to the suspect, thereby linking the suspect to the crime. In such cases, DNA typing can be used very effectively to identify the criminal only if the offense is reported immediately, and DNA samples are taken as soon as possible. Establishment of identity in insurance claims: It is often necessary to establish the identity of a claimant in life insurance claims. DNA typing can determine the relationship of the claimant to the insured individual. DNA typing is also extremely effective in identifying individuals who have died in accidents or by other causes, and whose bodies have been severely mutilated making conventional identification impossible. Hence, DNA typing can be used to confirm the death of the insured person. Establishment of a criminal DNA profile data bank: Many countries have enacted legislation to establish a DNA databank, containing profiles from individuals convicted of specific crimes, especially violent crimes and sexual offences. Law enforcement agencies search these databanks for matches with DNA profiles from biological evidence of unsolved crimes. Using these databanks, law enforcement agencies have been successful in identifying suspects in cases thought to be unsolvable. Such databases are also a powerful deterrent to crime because the criminal knows that his DNA profile is on record. ​

  • PCR Technology | Genetech

    Polymerase Chain Reaction (PCR) Technology (18 hours) This course is suitable for school-level, undergraduate and graduate students, and those engaged in scientific research, diagnostics and teaching which involves Polymerase Chain Reaction (PCR) Technology. ​ Theory: Guidelines for PCR Principle of PCR Critical factors for successful PCR Designing PCR primers Standard practices in a PCR Laboratory Troubleshooting and prevention of carryover contamination Optimization strategies for PCR PCR product analysis: Detection of PCR products by gel electrophoresis Methods of purification and quantification of PCR products Methods of labelling of PCR products (PCR probes) and visualization of label Cloning of PCR products: TOPO cloning DNA sequence analysis of PCR product PCR Applications: Restriction Fragment Length Polymorphism (RFLP) and Randomly Amplified Polymorphic DNA (RAPD) analysis Short Tandem Repeat (STR) (micro-satellite) analysis Multiplex PCR Reverse Transcription (RT)-PCR PCR-ELISA (Enzyme Linked Immunosorbent Assay) In-situ PCR Quality Control/Quality Assurance of PCR assays ​ Practicals: Extraction of DNA from cells, blood stains for PCR A standard PCR assay Analysis of PCR products by agarose and acrylamide gel electrophoresis Strategies for optimization of PCR Purification of PCR products Labelling of PCR products Primer design using online sequence databases PCR-RFLP assay Multiplex PCR assay RT-PCR assay PCR-ELISA assay PCR troubleshooting ​ ​ View FAQs Contact us If you are interested in doing this course at Genetech, please submit the Inquiry Form below or email us at info@genetechsrilanka.com to receive further details. View Inquiry Form

  • Samudi Mohotti | Genetech

    Samudi Mohotti Senior Scientist Samudi Mohotti commenced her professional career at Genetech as a Scientific Officer at the division of parentage testing in 2004. In subsequent years, she was promoted to the post of Senior Scientist and currently oversees the entire process of parentage testing. She is one of the most experienced scientists in the field of DNA typing and has contributed to submit over 3,000 DNA test reports for civil and criminal cases to the Sri Lankan Judiciary. She took part in the development of an allele frequency databases of autosomal STR markers for Sri Lankans ethnicities and co-authored a journal paper in a high-impact journal, Forensic Science International: Genetics. In addition to DNA typing, she is involved in many research projects conducted by Genetech on contract basis to meet the requests from both state and private institutes. She is also a key member of the team which maintains the ISO 15189 quality management system of our laboratory. Samudi obtained her BSc degree in Biological Sciences from the University of Colombo, Sri Lanka and her Master’s degree in Applied Microbiology from the University of Kelaniya, Sri Lanka.

  • Our Tests | Genetech

    Our Tests Molecular Diagnostics We pioneered the use of molecular diagnostics in Sri Lanka. We seek evidence of a disease at the basic causative level by detecting the nucleic acids based on PCR technology. Read More GM and Other Food Testing We use a PCR method to identify the most common genetic elements that are generally found in Genetically Modified (GM) crops. Our test can be applied to a wide range of food items including crops and processed food. Read More DNA Typing We pioneered the use of DNA typing for human identification for forensic casework and analysis of family relationships including parentage testing. Read More Sex Determination of Birds Many bird species are monomorphic; thus, males and females cannot be distinguished visually. We offer molecular sexing for proper gender assignment of a wide range of bird species with an accuracy of 99.9%. Read More Animal Testing We are the only firm to provide a PCR based animal disease testing service in Sri Lanka. We offer tests which detect Canine Parvovirus, Canine Distemper, Canine Babesiosis and Canine Ehrlichiosis. In addition to animal disease testing, we provide a cattle parentage testing service through the use of DNA typing. Read More

  • Internship in DNA Fingerprinting and Genetic Testing | Genetech

    Internship Programme in DNA Fingerprinting and Genetic Testing Who Can Register: Graduates, undergraduates, postgraduates, researchers, and A/L students This internship programme offers flexible durations of two weeks, four weeks, and six weeks. Internships are available year-round, subject to space availability, and can be customised to meet specific requirements. Programme Overview: The internship provides comprehensive training in DNA fingerprinting for forensic and kinship testing, genetic disease diagnostics, GMO testing as well as many other widely used molecular applications. Two-Week Programme – LKR 48,000.00 Laboratory exposure working alongside our scientists in areas such as molecular forensics, kinship testing, GMO testing, and genetic disease diagnostics. Hands-on experience in molecular techniques by carrying out selected test methods. Four-Week Programme – LKR 72,000.00 Includes all components of the two-week programme, with the added opportunity to conduct a short-term research project. This project focuses on applying DNA fingerprinting techniques, involving a literature review, independent lab work, and data analysis. Six-Week Programme – LKR 96,000.00 Extends the four-week programme, allowing for a more in-depth research experience, with additional time for experimental work, data interpretation, and presentation of findings. Upon successful completion of the programme, interns will receive a certification letter detailing their training and experience. ​ ​ ​ ​ View FAQs Contact us If you are interested in doing an internship at Genetech, please submit the Inquiry Form below or email us at info@genetechsrilanka.com to receive further details. View Inquiry Form

  • GM and Other Food Testing | Genetech

    Genetically Modified and Other Food Testing Definition Genetically modified (GM) foods are foods derived from organisms whose genetic material (DNA) has been modified through the introduction of a gene from a different organism. Currently available GM foods stem mostly from plants. What we do We use a PCR method to identify the most common genetic elements that are generally found in GM crops. The test is very sensitive and able to detect 0.1% GM content. In addition to the common genetic elements, on request, we also offer to detect other genetic elements that are assumed to have been integrated into the plants during the GM procedure. Our test can be applied to crops such as corn, soy, canola, and potato as well as processed food items such as tea, desiccated coconut, bakery & confectionery items, breakfast cereals & snacks, food additives, and others. Validation of method The test method has been validated according to the guidelines given by the European Commission Joint Research Centre for food samples and uses positive (European Certified reference materials) and negative control samples in order to assure the best qualitative results. Who we help Our testing facility has been utilised by the Food Control Administration Unit, Ministry of Health, Sri Lanka for the screening of imported seeds and food products as well as local farmers, manufactures and exporters to certify their products are free from GM food materials. Contact us View price list

  • Molecular Diagnostics | Genetech

    Molecular Diagnostics Did you know? We pioneered the use of molecular diagnostics in Sri Lanka. This field, which was almost unknown to the medical fraternity in Sri Lanka is now widely used in delivering high quality patient management. Molecular diagnostics is now an accepted and even essential part of the health care system since it was introduced to Sri Lanka by us in 2002. How we strengthened our clients' trust In order to standardise our tests and strengthen our clients' trust, We have applied for and obtained ISO 15189 accreditation. Thus, our tests including those related to molecular disease diagnostics are excellent in all aspects. The importance of nucleic acids Infectious diseases are caused by a wide variety of organisms, ranging from multi-cellular parasites and fungi to uni-cellular bacteria to non-cellular viruses. These organisms cover a wide range of phyla, and have extremely diverse ways of infecting human beings. In spite of these differences, they all possess nucleic acids (DNA or RNA molecules), their hereditary material. This DNA or RNA forms the basis of their individuality, and because it is the basis of diversity, it is possible to identify these organisms from their DNA or RNA. What we offer with PCR technology Unlike other diagnostic methods, which rely on microscopy, culture, biochemical characteristics and indirect antibody detection, molecular diagnostics seeks evidence of a disease at the very basic causative level by detecting the nucleic acids based on PCR (Polymerase Chain Reaction) technology. ​ This technology is also used to detect changes or mutations in our DNA, which can cause disease conditions known as genetic disorders. While some of these genetic disorders are passed from generation to generation, some happen spontaneously. Genetech offers DNA-based testing services for a wide variety of such genetic disorders and cancer markers. Contact us View Price List and Sample Collection Guide

  • Journal Publications - Page 2 | Genetech

    ​ Sathkumara, H. D., Merritt, A. J., Corea, E. M., Krishnananthasivam, S., Natesan, M., Inglis, T. J. J. & De Silva, A. D. (2018) Clinical, Bacteriologic, and Geographic Stratification of Melioidosis Emerges from the Sri Lankan National Surveillance Program. Am J Trop Med Hyg . 98(2), 607-615. Available from: doi: 10.4269/ajtmh.17-0441 Grifoni, A., Weiskopf, D., Arlehamn, C. S. L., Angelo, M., Leary, S., Sidney, J., Frazier, A., Phillips, E., Mallal, S., Mack, S. J., Tippalagama, R., Goonewardana, S., Premawansa, S., Premawansa, G., Wijewickrama, A., De Silva, A. D. & Sette, A. (2018) Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 714 adults from Colombo, Sri Lanka. Hum Immunol . 79(2), 87-88. Available from: doi: 10.1016/j.humimm.2017.12.007 Patil, V. S., Madrigal, A., Schmiedel, B. J., Clarke, J., O'Rourke, P., de Silva, A. D., Harris, E., Peters, B., Seumois, G., Weiskopf, D., Sette, A. & Vijayanand, P. (2018) Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci Immunol . 3(19). Available from: doi: 10.1126/sciimmunol.aan8664 Nanayakkara, K. K., Rodrigo, U. G., Perera, K. L. N. & Nanayakkara, C. D. (2017) Pre-natal diagnosis of thalassaemia in Sri Lanka: A ten year review. J Obstet Gynaecol . 37(7), 861-863. Available from: doi: 10.1080/01443615.2017.1306841 de Silva, W.S.I., Perera, M.M.N., Perera, K.L.N.S., Wickramasuriya, & A.M., Jayasekera G.A.U. (2017) In silico Analysis of osr40c1 Promoter Sequence Isolated from Indica Variety Pokkali. Rice Science, Vol. 24 (4): 228-234 Available from: doi: 10.1016/j.rsci.2016.11.002 . Gunasekara, J.M.A., Jayasekera, G.A.U, Perera, K.L.N.S. & Wickramasuriya, A.M, (2017) Development of a Sri Lankan rice variety Bg 94-1 harbouring cry2A gene of Bacillus thuringiensis resistant to rice leaffolder [Cnaphalocrocis medinalis (Guenée)]. Journal of the National Science Foundation of Sri Lanka, 45(2): 143–157. Available from: doi: 10.4038/jnsfsr.v45i2.8180 Goonawardhana, N.D.S., Jayasekara, G.S.K.W., Elanahai, V., Udagama, P.V., & Fernandopulle N.D. (2017) Population genetic data for ten miniSTR loci in the Sri Lankan population. International Journal of Legal Medicine. 131(4):969-970. Available from: doi: 10.1007/s00414-016-1512-3 Tian, Y., Babor, M., Lane, J., Schulten, V., Patil, V. S., Seumois, G., Rosales, S. L., Fu, Z., Picarda, G., Burel, J., Zapardiel-Gonzalo, J., Tennekoon, R. N., De Silva, A. D., Premawansa, S., Premawansa, G., Wijewickrama, A., Greenbaum, J. A., Vijayanand, P., Weiskopf, D., Sette, A. & Peters, B. (2017) Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat Commun. 8(1), 1473. Available from: doi: 10.1038/s41467-017-01728-5 Grifoni, A., Angelo, M. A., Lopez, B., O'Rourke, P. H., Sidney, J., Cerpas, C., Balmaseda, A., Silveira. C. G. T., Maestri, A., Costa, P. R., Durbin, A. P., Diehl, S. A., Phillips, E., Mallal, S., De Silva, A. D., Nchinda, G., Nkenfou, C., Collins, M. H., de Silva, A. M., Lim, M. Q., Macary, P. A., Tatullo, F., Solomon, T., Satchidanandam, V., Desai, A., Ravi, V., Coloma, J., Turtle, L., Rivino, L., Kallas, E. G., Peters, B., Harris, E., Sette, A. & Weiskopf, D. (2017) Global Assessment of Dengue Virus-Specific CD4+ T Cell Responses in Dengue-Endemic Areas. Front Immunol. Available from: doi: 10.3389/fimmu.2017.01309 Grifoni, A., Pham, J., Sidney, J., O'Rourke, P. H., Paul, S., Peters, B., Martini, S. R., de Silva, A. D., Ricciardi, M. J., Magnani, D. M., Silveira, C. G. T., Maestri, A., Costa, P. R., de-Oliveira-Pinto, L. M., de Azeredo, E. L., Damasco, P. V., Phillips, E., Mallal, S., de Silva, A. M., Collins, M., Durbin, A., Diehl, S. A., Cerpas, C., Balmaseda, A., Kuan, G., Coloma, J., Harris, E., Crowe Jr, J. E., Stone, M., Norris, P. J., Busch, M., Vivanco-Cid, H., Cox, J., Graham, B. S., Ledgerwood, J. E., Turtle, L., Solomon, T., Kallas, E. G., Watkins, D. I., Weiskopf, D. & Sette, A. (2017) Prior Dengue virus exposure shapes T cell immunity to Zika virus in humans. J Virol. 91(24). Available from: doi: 10.1128/JVI.01469-17 Uehara, A., Tissera, H. A., Bodinayake, C. K., Amarasinghe, A., Nagahawatte, A., Tillekeratne, L. G., Cui, J., Reller, M. E., Palihawadana, P., Gunasena, S., De Silva, A. D., Wilder-Smith, A., Gubler, D. J., Woods, C. W. & Sessions, O. M. (2017) Analysis of Dengue Serotype 4 in Sri Lanka during the 2012-2013 Dengue Epidemic. Am J Trop Med Hyg. 97(1), 130-136. Available from: doi: 10.4269/ajtmh.16-0540 Krishnananthasivam, S., Jayathilaka, N., Sathkumara, H. D., Corea, E., Natesan, M. & De Silva, A. D. (2017) Host gene expression analysis in Sri Lankan melioidosis patients. PLoSNegl Trop Dis . 11(6). Available from: doi: 10.1371/journal.pntd.0005643 Krishnananthasivam, S., Sathkumara, H. D., Corea, E., Natesan, M. & De Silva, A. D. (2017) Gene Expression Profile of Human Cytokines in Response to Burkholderia pseudomallei Infection. mSphere . 2(2). Available from: doi: 10.1128/mSphere.00121-17 Grifoni, A., Angelo, M., Sidney, J., Paul, S., Peters, B., de Silva, A. D., Phillips, E., Mallal, S., Diehl, S. A., Botten, J., Boyson, J., Kirkpatrick, B. D., Whitehead, S. S., Durbin, A. P., Sette, A. & Weiskopf, D. (2017) Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain. J Virol . 91(8). Available from: doi: 10.1128/JVI.02133-16 Natesan, M., Corea, E., Krishnananthasivam, S., Sathkumara, H. D., Dankmeyer, J. L., Dyas, B. K., Amemiya, K., De Silva, A. D. & Ulrich, R. G. (2017) Calprotectin as a Biomarker for Melioidosis Disease Progression and Management. J Clin Microbiol. 55(4), 1205-1210. Available from: doi: 10.1128/JCM.02284-16 Angelo, M. A., Grifoni, A., O'Rourke, P. H., Sidney, J., Paul, S., Peters, B., De Silva, A. D., Phillips, E., Mallal, S., Diehl, S. A., Kirkpatrick, B. D., Whitehead, S. S., Durbin, A. P., Sette, A. & Weiskopf, D. (2016) Human CD4+ T cell responses to an attenuated tetravalent dengue vaccine parallel those induced by natural infection, in magnitude, HLA restriction and antigen specificity. J Virol . 91(5). Available from: doi: 10.1128/JVI.02147-16 Bodinayake, C. K., Tillekeratne, L. G., Nagahawatte, A., Devasiri, V., Kodikara Arachichi, W., Strouse, J. J., Sessions, O. M., Kurukulasooriya, R., Uehara, A., Howe, S., Ong, X. M., Tan, S., Chow, A., Tummalapalli, P., De Silva, A. D., Østbye, T., Woods, C. W., Gubler, D. J. & Reller, M. E. (2016) Emergence of Epidemic Dengue-1 Virus in the Southern Province of Sri Lanka. PLoS Negl Trop Dis. 10(10). Available from: doi: 10.1371/journal.pntd.0004995 Kamaral, L. C. J., Dassanayaka, P. N., Perera, K. L. N. S. & Perera, S. A. C. N. (2016) SSR markers reveal the population structure of Sri Lankan yellow dwarf coconuts (Cocos nucifera L.). Tree Genetics & Genomes 12, 116. Available from: doi: 10.1007/s11295-016-1076-x Kirupananthan, R., Kamaral, L. C. J., Galhena, G. H., Perera, K. L. N. S. & Magamage, M. P. S. (2016) Address the public health and food security concerns of babesiosis through molecular detection of Babesia bovis in suspected carrier cattle of selected localities in Sri Lanka. Procedia Food Science 6: 213-219. Available from: doi: 10.1016/j.profoo.2016.02.053 Weiskopf, D., Angelo, M. A., Grifoni, A., O'Rourke, P. H., Sidney, J., Paul, S., De Silva, A. D., Phillips, E., Mallal, S., Premawansa, S., Premawansa, G., Wijewickrama, A., Peters, B. & Sette, A. (2016) HLA-DRB1 Alleles Are Associated With Different Magnitudes of Dengue Virus-Specific CD4+ T-Cell Responses. J Infect Dis. 214(7), 1117-1124. Available from: doi: 10.1093/infdis/jiw309 de Alwis, R., Bangs, D. J., Angelo, M. A., Cerpas, C., Fernando, A., Sidney, J., Peters, B., Gresh, L., Balmaseda, A., de Silva, A. D., Harris, E., Sette, A. & Weiskopf, D. (2016) Immunodominant Dengue Virus-Specific CD8+ T Cell Responses Are Associated with a Memory PD-1+ Phenotype. J Virol. 90(9), 4771-4779. Available from: doi: 10.1128/JVI.02892-15 Olsen, A., Chen, Y., Ji, Q., Zhu, G., De Silva, A. D., Vilchèze, C., Weisbrod, T., Li, W., Xu, J., Larsen, M., Zhang, J., Porcelli, S. A., Jacobs Jr, W. R. & Chan, J. (2016) Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. MBio. 7(3). Available from: doi: 10.1128/mBio.01023-15 Tissera, H., Amarasinghe, A., Gunasena, S., De Silva, A. D., Yee, L. W., Sessions, O., Muthukuda, C., Palihawadana, P., Lohr, W., Byass, P., Gubler, D. J. & Wilder-Smith, A. (2016) Laboratory-Enhanced Dengue Sentinel Surveillance in Colombo District, Sri Lanka: 2012-2014. PLoS Negl Trop Dis. 10(2). Available from: doi: 10.1371/journal.pntd.0004477 Weiskopf, D., Angelo, M., Zapardiel, J., Seumois, G., De Silva, A., De Silva, A. D., Vijay, P., Peters, B. & Sette, A. (2016) DENV-specific CD4 T-cells dominantly recognize capsid-derived epitopes and display a cytotoxic phenotype. J Immunol . 196 (1). Available from: https://www.jimmunol.org/content/196/1_Supplement/147.13/tab-article-info Padumadasa, C., Perera, K. L. N. & Sankalpani, E. M. N. (2016) DNA intercalation and cleavage studies of plumbagin and phenanthroline-based Cu(II) complex, [Cu(PLN)(PHEN)]NO3. Int J Chem Stud. 4(4), 87-90. Available from: https://www.chemijournal.com/archives/?year=2016&vol=4&issue=4&ArticleId=282&si=false Fernando, A. N., Malavige, G. N., Perera, K. L. N., Premawansa, S., Ogg, G. S. & De Silva, A. D. (2015) Polymorphisms of Transporter Associated with Antigen Presentation, Tumor Necrosis Factor-α and Interleukin-10 and their Implications for Protection and Susceptibility to Severe Forms of Dengue Fever in Patients in Sri Lanka. Journal of Global Infectious Diseases. 7(4): 157–164. Available from: doi: 10.4103/0974-777X.170501 Weiskopf, D., Cerpas, C., Angelo, M. A., Bangs, D. J., Sidney, J., Paul, S., Peters, B., Sanches, F. P., Silvera, C. G., Costa, P. R., Kallas, E. G., Gresh, L., de Silva, A. D., Balmaseda, A., Harris, E. & Sette, A. (2015) The Human CD8+ T-Cell Responses Against the 4 Dengue Virus Serotypes Are Associated With Distinct Patterns of Protein Targets. J Infect Dis . 212(11), 1743-1751. Available from: doi: 10.1093/infdis/jiv289 ​ ​ Page 2 of 3 Journal Publications ​ 1 2 3

bottom of page